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Closing the hierarchy of moment equations in nonlinear dynamical systems
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The moment equations associated with the evolution of the probability density are known to form an infinite
hierarchy of coupled equations in nonlinear dynamical systems. In the present paper a systematic approach for
closing this hierarchy is proposed, based on the ansatz that in the long time limit there exist groups of moments
varying on the same time scale. The method is applied to a one-dimensional vector field in the presence of
noise, and to two prototypes of chaotic behavior. Excellent agreement with numerical results is obtained.
Special emphasis is placed on the role of symmetries, and on the origin of the composite oscillations found for
certain types of moments in the chaotic systems.@S1063-651X~98!01310-5#

PACS number~s!: 05.45.1b, 05.40.1j
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I. INTRODUCTION

It is widely recognized that the probabilistic descriptio
constitutes the natural mode of approach to large classe
dynamical systems. On the one hand, such systems are
subjected to a variety of forcings, including the interna
generated thermodynamic fluctuations, which can in cer
cases be assimilated to a stochastic process, thereby elic
a response at the level of the system’s observables which
best be described in probabilistic terms@1#. On the other
hand, as well known, purely deterministic systems obey
nonlinear evolution laws can generate complex behavio
the form of multiple solutions or aperiodic space-time ev
lutions, of which deterministic chaos is the most striki
example@2#. Under these conditions the state of the syst
becomes markedly delocalized in phase space, and,
again, the probabilistic description offers the most natu
way to account for this variability and to characterize it
terms of quantities related to the intrinsic properties of
underlying dynamics@2,3#. This approach has been used su
cessfully in, among others, the problem of prediction in
context of atmospheric and climate dynamics@4#, and the
characterization of multifractals@5# and fully developed tur-
bulence@6#.

A typical feature of the probabilistic description is to e
press the evolution of probability densities in terms of alin-
ear evolution equation, as opposed to the generally nonlin
character of the corresponding deterministic description. F
thermore, while in a nonlinear system the deterministic
scription may predict a variety of instabilities, in the prob
bilistic system the probability density will be drive
irreversibly to a final invariant state, as long as the syst
enjoys sufficiently strong ergodic properties. The complex
of the deterministic nonlinear dynamics will show up, the
through the nonlinear dependence of the coefficients of
evolution equations of the probability densities in the ph
space variables. As a result of this, it is generally not p
sible to find closed-form solutions for such densities.

On the other hand, typical macroscopic observables a
PRE 581063-651X/98/58~4!/4391~10!/$15.00
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ciated with a system are generally low-order moments of
probability density. To characterize the macroscopic state
such a system, it would therefore suffice to compute th
first few moments instead of the full density function. It
here that one encounters a ubiquitous limitation, complic
ing, at the outset, the probabilistic study of nonlinear s
tems: owing to the nonlinear dependence of the coefficie
of the equation for the probability density, the low-order m
ments do not obey closed evolution equations but are, rat
linked to the high-order ones by an infinitehierarchy of
coupled equations.

Several attempts at overcoming this fundamental di
culty have been reported in the literature. The first idea t
comes to mind is to neglect higher order moments or, m
precisely, the corresponding variances or cumulants, a
gether. This gives reasonable results in systems opera
around a stable steady state and submitted to weak noise
fails completely in the presence of strong fluctuations and
chaotic dynamics. A somewhat related technique, subjec
sentially to the same limitations, is to linearize the coe
cients of the equations for the probability densities aroun
reference state@1#. A third type of approach consists of see
ing for scaling relations between moments, using argume
inspired by Kolmogorov’s theory of turbulence@6#. It has
been applied recently both at the level of heuristic models@7#
and at the level of the Navier-Stokes equations@8#. The ob-
jective of the present paper is to propose a systematic
proach to the truncation of the moment hierarchies, and
apply it to representative case studies.

The main idea, presented in Sec. II, is to express hi
order moments as time-independent functionals of the lo
order ones. This stems from the observation that in the
gime of long~but not infinite! times there exist subclasses
moments varying on the same time scale, given by the do
nant eigenvalue~s! of the evolution operator for the probabi
ity density. This provides, then, a natural closure sche
linking the high-order moments to the first few ones. As
preliminary exercise, in Sec. III a deterministic on
dimensional vector field is considered, and shown not to
4391 © 1998 The American Physical Society
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4392 PRE 58C. NICOLIS AND G. NICOLIS
isfy the ansatz of Sec. II, owing to the quasi-independ
evolution of the successive moments. Section IV is devo
to a study of this system in the presence of noise. It is sho
that noise provides the kind of coupling needed to synch
nize the moments, thereby allowing for closed-form eq
tions for the evolution of the mean value and the seco
moment. This result is fully corroborated by numerical e
periments.

The case of chaotic dynamics is considered in Secs. V
VI dealing, successively, with the Ro¨ssler and the Lorenz
models. Closure is again shown to hold true, and the intric
role of symmetries in the evolution equations is brought o
The main conclusions are finally drawn in Sec. VII.

II. FORMULATION

In the sequel we shall be dealing with dynamical syste
obeying deterministic evolution laws of the form

dx

dt
5F~x,m!, ~1a!

or with systems subjected, in addition, to a stochastic forc
reflecting environmental or internal variability,

dx

dt
5F~x,m!1R~ t !. ~1b!

Here x5(x1 ,...,xn) is the set of variables,F5(F1 ,...,Fn)
the evolution laws,m stands for the control parameters, a
R(t) denotes the random force. We shall limit ourselves
the case whereR(t) is an additive Gaussian white noise,

^R~ t !&50,
~2!

^Ri~ t !Rj~ t8!&5Di j d~ t2t8!,

where it is understood that the covariance matrix$Di j % is
positive definite.

The evolution of the probability densities associated w
Eqs.~1a! and~1b! is given, respectively, by the Liouville an
the Fokker-Planck equations@1–3#,

]r

]t
52(

i

]

]xi
Fir[L̂r ~Liouville equation!, ~3a!

]r

]t
52(

i

]

]xi
Fir1

1

2 (
i j

Di j

]2r

]xi]xj

[ P̂r ~Fokker-Planck equation!. ~3b!

We define the set ofkth-order moments ofr as follows:

mk1¯kn
~ t !5x1

k1
¯xn

kn5E dx1¯dxnx1
k1
¯xn

knr~x1 ,¯xn ,t !

~4a!
k11¯1kn5k.

Multiplying both sides of Eqs.~3a! and~3b! by x1
k1
¯xn

kn,
integrating over phase space and performing integration
parts ~being understood thatr tends rapidly to zero asuxu
→`) one obtains, respectively,
t
d
n
-
-
d
-

nd

te
t.

s

g

o

by

d

dt
x1

k1
¯xn

kn5(
i

kix1
k1
¯xi

ki21
¯xn

knFi ~4b!

and

d

dt
x1

k1
¯xn

kn5(
i

kix1
k1
¯xi

ki21
¯xn

knFi

1 1
2 (

i j
Di j kikjx1

k1
¯xi

ki21
¯xj

kj 21xn
kn.

~4c!

We see that, as anticipated in Sec. I, as long asFi is not
linear in xi , Eqs. ~4b! and ~4c! indeed constitute infinite
hierarchies of equations linking moments of orderk to mo-
ments of at least orderk11. On the other hand, the secon
term in Eq.~4c! introduces a moment of orderk22. As we
see later, this term will be responsible for the coupling of
moments and their eventual synchronization to the same
scale.

Let $ln%, n50,1..., be the eigenvalues ofL̂ or P̂. To
express the main idea of this paper in as simple a settin
possible, we assume$ln%, nÞ0, to be discrete, nondegene
ate, and separated from the invariant eigenvaluel050 by a
finite gap. Furthermore, we consider systems having su
ciently strong ergodic properties, so that a typical initial co
dition r0(x) is driven irreversibly to the invariant distribu
tion rs(x). This implies that

Re ln,0, nÞ0. ~5!

By ordering theln’s according to increasing absolute valu
of their real parts we may then write formally the solution
Eqs.~3a! or ~3b! as

dr t~x!5r t~x!2rs~x!5 (
n51

`

Cnelntfn , ~6!

where$fn% are the right eigenfunctions of the operator, a
the expansion coefficients$Cn% are given by

Cn5~f̃n ,r0!5E dx f̃n~x!r0~x!. ~7a!

Here f̃ are the left eigenfunctions, and we have used
biorthogonality relation

~f̃n ,fn!5dnn8
kr . ~7b!

Notice thatf05rs and f̃051.
The deviation of the kth-order moment from its

asymptotic value is given by integrating thevector monomial

xk5x1
k1
¯xn

kn, k11¯1kn5k

over dr t(x):

dxk5 (
n51

`

Cnelnt~xk,fn!5 (
n51

`

CnelntBkn . ~8!
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Equations~6! and~8! imply that in the limit of long times
dr t and its moments will be dominated by the eigenvalu
ln having the smallest real parts. Letl1 ,...,ls be the set of
such eigenvalues. We then have, from Eq.~8!,

dxk' (
n51

s

CnelntBkn , 1<k<s. ~9!

These relations can be viewed as a system of equations
ing Cnelnt to dxk through the inverse matrixB21 of $Bkn%,

S C1el1t

]

Cse
lst
D 5B21S d x̄

]

dxk
D . ~10!

Now let dxm, m.s, be a higher order moment. According
Eqs.~9! and ~10!,

dxm' (
n51

s

CnelntBmn5 (
n,n851

s

Bmn~B21!nn8dxn8, m.s.

~11!

This relation expresses themth momentm.s as a superpo-
sition of s lower order moments. It therefore provides us w
a way to close the hierarchy of moment equations to its fi
s members. The procedure holds true as long asB is invert-
ible and theBmn’s are not all zero. As we will see shortly
this may indeed happen in the presence of symmetries
which case the above scheme should be properly ame
by restricting the sums to terms having similar symme
properties.

III. 1D VECTOR FIELD: DETERMINISTIC CASE

In order to gain insight on the necessary ingredients
closure we consider in this section a simple model in wh
all calculations, including the determination of the full for
of the probability density itself, can be carried out explicit

We start with the case of a linear one-dimensional~1D!
vector field

dx

dt
5mx, m,0, ~12!

corresponding in the general setting of Eq.~1a! to F(x)
5mx. The moment equations~4b! then read

dxk

dt
5kmxk, ~13!

showing that moments are decoupled and each of them
ies on a different scale, (km)21. This is, therefore, a cas
where closure is not expected to work.

To see how this shows up in our formulation we consid
the Liouville operator associated with Eq.~12!,

L̂52
]

]x
mx. ~14!

The eigenvalues and eigenfunctions of this operator h
been fully determined in Ref.@9#. One finds
s

k-

t

in
ed

y

r
h

r-

r

e

ln52numu,

fn5~21!nd~n!~x!,

f̃n5
xn

n!
, n50,1,2,... . ~15!

The spectral representation ofdr t and dxk in this basis
read@Eqs.~6! and ~8!#

dr t~x!5 (
n51

`

Cne2numut~21!nd~n!~x!,

~16a!

dxk5 (
n51

`

Cne2numut~21!nE
2`

`

dx xkd~n!~x!.

Using the properties of the Diracd function and its deriva-
tives, one sees straightforwardly that

Bkn5~21!nE
2`

`

dx xkd~n!~x!50, kÞn

51, k5n. ~16b!

As a result, Eq.~16a! yields

dxk5Cke
2kumut,

in agreement with Eq.~13!. Clearly, one is here in the cas
where either the matrixB is not invertible or the coupling
coefficientsBmn are trivial in Eq.~11!.

Next consider a nonlinear vector field with a cubic no
linearity below the~pitchfork! bifurcation pointm50,

dx

dt
5mx2x3, m,0. ~17!

The moment equations~4b! are now nonclosed,

dxk

dt
5kmxk2kxk12, ~18!

but one observes that the~infinite! matrix of coefficients is
an upper triangular matrix, suggesting that the moments
vary on different scales. One can confirm this by the study
the spectrum of the Liouville operator corresponding to~17!,
L̂52(]/]x)(mx2x3). One finds@9#

xn52numu,

fn5
]

]jn dFx2
umu1/2j

A12j2G
j50

, ~19!

f̃n5
1

n! S x

Ax21umu
D n

, n50,1,2,... .

The coefficientBkn in the spectral representation ofdxk, Eq.
~8!, is thus given by
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Bkn5
]

]jn

umuk/2jk

~12j2!k/2U
j50

.

We notice that fork51 one obtains a nonvanishing contri-
bution with n51; for k52 the contribution ofB21 is zero,
and that ofB22 nonvanishing, etc. We thus recover the sepa
ration of the time scales of the linear case, entailing that on
cannot expect the existence of closure expressing high-ord
moments in terms of lower order ones.

We now illustrate these results by means of a numeric
experiment, which will also set the stage for similar experi
ments carried out in the more involved cases of the followin
sections. Since we want to capture a transient phenomen
~eventually all moments will settle to their asymptotic values
if the system has strong ergodic properties!, we need to fol-
low the time evolution of an ensemble of phase space poin
initially far from the asymptotic state (x50 in the present
case!. To this end, we choose 1000 initial conditions distrib-
uted uniformly in the interval@3,6#, monitor the instanta-
neous position of each of these points, and construct th
instantaneous values of the various moments by evaluati
the discrete analog of Eq.~4a!. Figure 1 depicts the result
obtained for the first and third moments. We see that th
third moment varies three times as fast as the first one,
agreement with the analytical result. This precludes the po
sibility to express high-order moments as functions of th
low-order ones.

IV. 1D STOCHASTICALLY DRIVEN VECTOR FIELD

In this section we consider the effect of noise on the mo
ment dynamics of the nonlinear 1D vector field of Eq.~17!.
The augmented evolution equation is now@cf. Eq. ~1b!#

dx

dt
5mx2x31R~ t !, m,0. ~20!

FIG. 1. Long time transient evolution of the first and third ex-
cess moments associated with Eq.~17!, with m520.1, as obtained
from an ensemble of 1000 initial conditions uniformly distributed in
the interval 3<x<6.
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This gives rise in the white noise limit to a Fokker-Plan
equation for the probability densityr(x,t) of the form @cf.
Eq. ~3b!#

]r

]t
52

]

]x
~mx2x3!1

D

2

]2r

]x2 , ~21!

and to the associated moment hierarchy@Eq. ~4c!#

dxk

dt
5mkxk2xk121

1

2
Dk~k21!xk22, k51,2,... .

~22!

As is well known, the eigenfunctions of the Fokke
Planck operator are smooth square integrable functionsx
@1,9,10#. In other words the presence of noise, howev
small, regularizes the highly singular eigenfunctions of t
Liouville operator of the previous section appearing in t
spectral representation of the excess probability density
Eq. ~16a!. On the other hand, these new smooth eigenfu
tions keep the symmetry of their singular counterparts: o
indexedfn’s are odd functions ofx, and even indexedfn’s
are even functions ofx. This has an immediate bearing o
the spectral representation of the moments@cf. Eqs.~9! and
~16a!#,

dxk5 (
n51

`

CnelntBkn5 (
n51

`

CnelntE
2`

`

dx xkfn~x!.

~23!

Specifically,Bkn is seen to be zero unlessk andn have the
same parity. Equation~23! therefore splits into two differen
sets,

dx2m5 (
n even

CnelntB2m,n , ~24a!

dx2m115 (
n odd

CnelntB2m11,n . ~24b!

To proceed further we need some information on the
genvalues$ln%. By mapping Eq.~21! into a Schro¨dinger-
type equation, one can show that the spectrum is discrete
nondegenerate~remembering thatm,0). In the long time
limit Eqs. ~24! are therefore dominated by the first nontrivi
term, which corresponds ton52 in Eq. ~24a! and n51 in
Eq. ~24b!. It follows that all even moments and all odd mo
ments taken separately evolve on the same scale, the
moments being faster than the odd ones. This provides
immediately with the necessary ingredients to close the m
ment hierarchy. To be specific, consider Eq.~22! for k51,
written in terms of excess variables around the steady s
values,

dd x̄

dt
5md x̄2dx3. ~25!

Now, according to Eq.~24b!,
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d x̄'C1el1tB11,

dx3'C1el1tB31'
B31

B11
d x̄, t.l1

21. ~26!

Inserting into Eq.~25!, one obtains a closed equation ford x̄,

dd x̄

dt
5S m2

B31

B11
D d x̄. ~27!

Comparing with Eq.~26!, we conclude thatm2B31/B11 is
the dominant eigenvalue of the Fokker-Planck opera
B31/B11 therefore represents the correction to the Liouvilli
eigenvaluel1

(0)5m arising from the effect of noise.
Figure 2 describes the result of a numerical evaluation

the first two even and odd moments form520.1 andD
50.01, obtained by monitoring the time evolution of a no
equilibrium ensemble initially corresponding to a unifor
distribution ofx in the interval@3,6#. We see that these tw
sets vary on the same scale, the first being faster than the
second in agreement with the theoretical predictions. To
the closure itself@Eq. ~26!#, in Fig. 3 we plot the excess thir
momentd x̄3 as a function ofd x̄. We obtain, after an initial
time layer, a straight line in agreement with Eq.~26!, the
slope of which gives the value of the noise correction to
Liouvillian eigenvaluel1

(0)520.1.

V. CHAOTIC DYNAMICS: ASYMMETRIC CASE

We now turn to higher-dimensional deterministic dynam
cal systems giving rise to chaotic behavior, focusing first
Rössler-type attractors, which lack any obvious symme
property. The particular prototype equations we shall c
sider are@11,12#

dx

dt
52y2z,

dy

dt
5x1ay, ~28!

dz

dt
5bx2cz1xz.

They generate fora50.32,b50.3, andc54.5 weak chaos
whereas fora50.38,b50.3, andc54.5 one obtains a stron
ger, more mixing form of chaos. We shall refer to these t
types of behavior as spiral and screw chaos, respectivel

The complexity of the above dynamics precludes
course any exact result concerning the eigenvalues
eigenfunctions of the Liouvillian, contrary to the case trea
in Sec. III. Still, because of the absence of symmetries
expects that in the spectral representation~9! and the closure
relations~11! the matrixB will be invertible and the expan
sion coefficientsBmn nonvanishing. As a corollary, and pro
vided that the spectrum remains discrete, all moments sh
vary on the same time scale, and closure should hold t
This is fully confirmed by numerical experiments to whic
we turn presently.

Figures 4~a! and 4~b! depict the time evolution of the
excess first moments and of three of the six excess se
r.
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moments in the case of spiral chaos, obtained by using
initial Gaussian ensemble centered on~0,0,0!, and having a
width equal to the asymptotic values of the second mome
We see that our ansatz is clearly satisfied. The follow
additional features are also worth noticing~a! that the mo-
ments perform composite oscillations in the form of be
ings; and~b! the damping of these oscillations remains pra
tically negligible for a substantial period of time, owin
presumably to the weak mixing character of spiral cha
These properties are also shared by other moments as
such asd x y, etc.

Figures 5~a! and 5~b! provide the same type of informa
tion for the case of screw chaos, again using an initial Gau
ian ensemble centered this time on~1,1,1!. We again observe
composite oscillations, which are now clearly damped.

In the light of the above results a minimal closure wou
be obtained by overlooking the fast oscillation of frequen
v f . The dominant eigenvalues of the Liouvillian would the
be given by a pair of complex conjugate eigenvalues exh

FIG. 2. As in Fig. 1, but for Eq.~20! with D50.01 and ford x̄,
dx3 ~full line! and dx2, dx4 ~broken line!, as obtained from an
ensemble of 20 000 initial conditions.

FIG. 3. Dependence of the excess third momentdx3 on d x̄ as
obtained from the numerical experiment of Fig. 2. The clear
linear relation provides a justification of the closure relation@Eq.
~26!#, and gives a noise correction;0.02 to the Liouvillian eigen-
value.
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iting an imaginary part equal to the slow oscillation fr
quencyvs , l1,25m6 ivs . According to Eqs.~9!–~11!, this
implies that all moments can be expressed in terms of
low-order ones, sayx̄ and ȳ. Writing, for instance,

z̄5m1x̄1m2ȳ, ~29!

and averaging the first two equations~28! one obtains the
closed set

dx̄

dt
52m1x̄2~11m2!ȳ,

~30a!

dȳ

dt
5 x̄1aȳ,

whose characteristic equation reads

v21~a2m1!v111m22m1a50. ~30b!

FIG. 4. Long time evolution ofd x̄, d ȳ, and d z̄ ~a!, and dx2,
dy2, and dz2 ~b!, in the case of spiral chaos@Eqs. ~28! with a
50.32,b50.3, andc54.5# as obtained from 20 000 initial condi
tions distributed according to a Gaussian ensemble centere
~0,0,0! and having a width equal to the asymptotic values of
second momentsx2, y2, z2.
o

Requiring that the solutions of this equation reproduce
observed frequency and damping values, one may inferm1
andm2 , which in this context play a role similar to that o
friction coefficients in a damped oscillator. We do not car
this argument further here, postponing a more compreh
sive analysis to Sec. VI, dealing with the Lorenz model.

To obtain a more satisfactory closure one needs to
count for both the fast and slow oscillations. Now, the tim
series of Figs. 4 and 5 can be well represented by a func
of the form Ae2mt cosvst cosvft, where cosvst accounts
for the amplitude modulation. On the other hand, in the sp
tral representation of Eq.~9!, the time dependencies enter
an additive fashion. One must therefore decompose
above function as

Ae2mt@cos~vs2v f !t1cos~vs1v f !t#, ~31!

implying the presence of combination overtones of the t
basic frequenciesvs andv f . We shall comment on the ori
gin of this phenomenon in Sec. VI.

To accommodate this scheme in the general setting
Sec. II, one now needs four basic moments in terms of wh
all others can be expressed. Each of these closure rela

on
e

FIG. 5. As in Fig. 4, but in the case of screw chaos@Eqs.~28!
with a50.38# and the initial Gaussian ensemble centered
~1,1,1!.
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will exhibit four phenomenological coefficients, whose va
ues could be determined by a procedure similar to the on
Eqs.~29! and ~30!.

VI. CHAOTIC DYNAMICS IN THE
PRESENCE OF SYMMETRIES

In this section we pursue the study of moment dynam
of chaotic systems by considering a different class of evo
tion equations admitting symmetries. The model on wh
the analysis will be illustrated is Lorenz’s classical mod
@13#

dx

dt
5s~2x1y!,

dy

dt
5rx2y2xz, ~32!

dz

dt
5xy2bz

for parameter valuesr 528, s510, andb5 8
3 .

One can check straightforwardly that these equations
main invariant under the transformation (x,y,z)→(2x,
2y,z). As this invariance property will be shared by th
Liouville operatorL̂ as well @Eq. ~3!#, we expect that there
will be two classes of eigenfunctions of this operator wh
will be either even or odd inx andy. The first class will be
the only one to contribute to the spectral representation@Eqs.
~8! and ~9!# of moments of the formxky2m2kzl , and the
second the only one to contribute to moments of the fo
xky2m112kzl . In analogy with Sec. IV, we therefore expe
even and odd moments associated with Eq.~32! to vary on
the same scale within each class, and on different scales
one class to another. This is fully confirmed by simulation
illustrated in Fig. 6. The simulation reveals, in addition, th
~a! odd moments vary on a faster scale than even ones~b!
odd moments vary monotonously in the long time limit; a
~c! even moments execute damped composite oscillation

FIG. 6. Time evolution of the excess momentsd z̄ ~broken line!
anddx z ~full line! normalized by their initial values in the case
the Lorenz model@Eqs.~32! with r 528, s510, andb5

8
3 # as ob-

tained from 20 000 initial conditions uniformly distributed on th
attractor.
in

s
-

h
l

e-

m
s
t

in

the long time limit, similar to those found in Sec. V. As
corollary of the above, closure relations are expected to h
only within each of these two classes of moments. In
sequel we analyze separately in some detail the case of
and odd moments.

A. Even moments

Owing to the composite character of the oscillations
the even moments revealed by Fig. 6, at least four differ
terms in the spectral representation of Eq.~9! are needed,
corresponding to two pairs of complex conjugate eigenval
with nearly identical real parts. A set of four equations i
volving only even excess moments can be deduced from
~32! by straightforward manipulations. It reads

d

dt
dx2522sdx212sd x y,

d

dt
dy2522dy212rd x y22d x y z,

~33!
d

dt
dz2522bdz212d x y z,

d

dt
d x y5rdx21sdy22~s11!d x y2dx2z.

In the sequel we therefore considerx2, y2, z2, andx y as the
basic set of even moments, and attempt to close the sys
of equations~33! by expressingx y z and x2z as a linear
combination of them@cf. Eq. ~11!#:

d x y z5a1dx21a2dy21a3dz21a4d x y,
~34!

dx2z5b1dx21b2dy21b3dz21b4d x y.

Substituting into Eq.~33!, we obtain a closed linear system
of equations for the four basic moments. The solutions
this system will display a behavior similar to Fig. 6 if th
corresponding characteristic equation has two pairs of c
plex conjugate eigenvalues with similar real parts, and w
imaginary parts related to the fast and slow oscillation f
quencies or appropriate combination overtones as in
~31!. This, however, is not sufficient to determine all coef
cientsai andbi . We therefore follow a different procedure
we require Eqs.~34! to hold at four different appropriately
chosen times, compute numerically the instantaneous
ments appearing in Eq.~34! for these four times, and deduc
the coefficientsai and bi by solving the linear set of equa
tions ~34! for these unknowns. We then stipulate that t
closure relations~34! should hold true for all times.

Figure 7 depicts the momentsdx2z and d x y z as ob-
tained directly from the simulation~full lines! along with the
values deduced from the closure relations~34! using the pro-
cedure explained above. The agreement is remarkably g
not only for the amplitude of the oscillations but for the
phase as well, which as well known is a much more sensi
variable. Notice that this agreement is independent of
instantaneous values of the moments chosen to fit the pa
eters in Eqs.~34!, provided that they are not too close. Th
result vindicates fully our closure ansatz. For reference
also give, in Fig. 8, a detailed plot of two typical even m
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mentsdx2 and dz2, illustrating both the similarity in their
behavior and the persistence of the composite oscillat
during an extended lapse of time.

Having determined the values ofai and bi , one may
come back to Eq.~33! and compute the roots of the chara
teristic equation. One indeed obtains two pairs of comp
conjugate roots, whose imaginary parts are linear comb
tions of the fast and slow frequencies appearing in the fig
in much the same way as in Eq.~31!.

We next comment on the origin of complex oscillations
the form of beatings observed in the transient behavior of
even moments of the Lorenz model, as well as of all m
ments of the Ro¨ssler model of Sec. V. The starting point
the connection between the eigenvalues of the Liouvill
and the zeros of the Selberg-Smale zeta function@14#

z~l!5)
p

(
k,l 50

` S 12
e2lTplp

l

uLpuLp
k D 50, ~35!

where the product is taken over all~unstable! periodic orbits
contained in the chaotic attractor.Tp are the corresponding
fundamental periods, andlp andLp the contracting and the

FIG. 7. Long time evolution of the excess even momentsdx2z
~a! and dx y z ~b!, obtained from simulation of system~32! ~full
lines! and from the closure relations~34! ~broken lines!. Parameters
and initial conditions are as in Fig. 6.
ns

x
a-
e,

e
-

n

expanding eigenvalues on a Poincare´ surface of section
transversal to the cycle. These eigenvalues may be rea
complex, positive or negative, provided that the inequalit
ulpu,1, uLpu.1 are satisfied.

A number of powerful techniques for carrying out su
periodic orbit expansions explicitly has been reported@15#
which, however, are typically applicable to hyperbolic sy
tems. Much remains to be done for real-world fractal attr
tors such as the Ro¨ssler and Lorenz attractors. In the follow
ing we therefore limit ourselves to purely qualitative a
somewhat speculative arguments. The main point is that
chaotic attractor one expects strong interference effects
tween the successive unstable cycles. The first nontrivial
stance in which such an interference will show up is wh
the infinite sum and product in Eq.~35! is truncated to its
first two terms in which only the two shortest cycles havi
unstable eigenvalues closer to unity than any other cycle
retained. Settingl 5k50, expanding the product, and kee
ing only diagonal terms referring to these two cycles, fro
Eq. ~35! one obtains

e2lT1

uL1u
1

e2lT2

uL2u
51. ~36!

If uL2u@1 the first term dominates in Eq.~36!, and the cor-
responding eigenvalues are given by@16#

FIG. 8. Typical time evolution of the even excess momentsdx2

~a! anddz2 ~b!. Parameters and initial conditions are as in Fig.
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ln5
2p i

T1
n2

1

T1
lnuL1u, n integer. ~37!

At the level of the long time behavior of the moments, th
would show up in the form of damped simple periodic osc
lations, which is not the case in the present problem. It the
fore seems reasonable to stipulate that the composite os
tions observed in Figs. 7 and 8 result from the joint effect
at least two unstable cycles on the underlying attractor
comparable~but different! expansion rates,uL1u,uL2u and
periodicities,T1,T2 . Equation~36! then becomes a tran
scendental equation whose solution will give, typically, co
bination overtones@17# of T1 andT2 , just as observed in the
simulation. Unfortunately the argument cannot be pushe
a more quantitative form, asTi anduL i u are unknown for the
models at hand.

B. Odd moments

We end this section by compiling the principal resu
concerning the analysis of the dynamics of odd moment
the Lorenz model. As seen from Fig. 6, these moments
dergo a transient behavior in the form of an undershoot,
lowed by damped oscillations, and eventually a practica
monotonous behavior in time. On the basis of this evide
we stipulate that two terms in the spectral representation
Eq. ~9! should now be sufficient. A set of two equation
involving only odd excess moments can be obtained fr
Eq. ~32! by simply averaging the first two equations,

dx̄

dt
5s~2 x̄1 ȳ!,

~38!
dȳ

dt
5rx̄2 ȳ2x y.

The corresponding closure relation replacing Eq.~34! is now
expected to be

d x y5a1d x̄1a2d ȳ, ~39!

in which the coefficientsa1 anda2 are to be determined b
the same procedure as in Sec. VI A. Figure 9 summarizes
comparison between the ‘‘exact’’ time dependence ofd x z
obtained by direct simulation~full lines! and the ‘‘fitted’’
one using Eq.~39!. The agreement is, again, remarkab
good.

On replacing Eq.~39! into Eq.~38!, one is in the position
to obtain analytically the time dependence ofx̄ and ȳ
through the computation of the roots of the characteri
equation. The result is, again, consistent with the time dep
dencies obtained by direct simulation.

VII. CONCLUSIONS

We have proposed a simple algorithm for generating c
sure relations for the long time behavior of the mome
equations of nonlinear dynamical systems. The metho
applicable to a wide class of systems, provided that one
counts properly for symmetry properties and as long as th
are finite gaps separating a set of ‘‘dominant,’’ slow eige
-
e-
la-
f
f

-

to

of
n-
l-
y
e
of

he

c
n-

-
t
is
c-
re
-

values from both the invariant eigenvalue and from t
higher order ones.

The closure relations generated by our method bear str
similarities with the phenomenological relations linking th
fluxes of irreversible processes to the associated genera
forces in irreversible thermodynamics. Well-known e
amples of such relations are Fourier’s or Fick’s laws, fam
iar in heat and mass transfer problems, and Stoke’s law
pressing momentum flux in terms of the velocity gradient
the Navier-Stokes equation. Common to all these relation
indeed that their origin lies in the spectral properties of
associated evolution operators. A major difference is, on
other hand, that the low-order moments in hydrodynam
may exhibit nontrivial time dependencies, including su
tained oscillations or chaotic behavior, whereas the mom
equations considered in the present work eventually adm
unique steady-state solution, as long as the system has s
ergodic properties. This is due to the nonexistence of c
served quantities in the class of dissipative dynamical s
tems considered in this study. The situation is likely to
different in spatially extended systems, which would u
doubtedly be worth investigating in the future from th
standpoint.

The nontrivial behavior of space averages in the long ti
limit has recently been established in systems of coup
map lattices, especially in the presence of global coupl
@18#. Again, it would be interesting to study the mome
dynamics of such systems in the framework of the appro
outlined in the present paper, to assess whether such be
ior finds its origin in the spectral properties of the evoluti
operator for the probability density replacing the Liouvil
operator for this class of systems.
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FIG. 9. Time evolution of the excess odd momentdx z as ob-
tained from direct numerical simulation of system~32! ~full line!
and from the closure relation~39! ~broken line!. Parameters and
initial conditions are as in Fig. 6.
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